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Introduction Radial-Anisotropy Toroidal Cores 

Conclusion 

Toroidal Core Measurements 
• Hysteresis measurements • Complex permeability measurements 

• Low-profile toroidal power inductors for power supply on 
chip and/or in package to improve integration. 

• Nanogranular magnetic material Co-Zr-O with radial-
anisotropy  developed for toroidal inductors 
• Deposited in the presence of radial magnetic field. 
• Radial easy axis and circumferential hard axis (aligned 

with flux direction). 
• Two winding fabrication approaches: 

• Printed circuit board (PCB)-based 
• Microfabricated (CMOS-compatible) 

• Toroidal inductors fabricated and tested at small-signal 
levels. 

Co-Zr-O Nanogranular Material 

• High saturation flux density: 1.1~1.2 T 
(3X ferrite) 

• High resistivity: 300~600 μΩ·∙cm  
(>10 X NiFe) 

• Moderate permeability: 40~80 μ0  
(ideal for inductors) 

• Anisotropy provides low hysteresis loss. 
• Operation to several GHz 

Hysteresis loops 

• Significant eddy-current losses where top 
and bottom magnetic cores meet. 

• The magnetic-via loss constitutes a big 
proportion of the total loss. 

• Limits maximum quality factor. 
 

• Depositing magnetic material in the presence of 
a radial magnetic field creates 
• radial easy axis 
• circumferential hard axis. 

• Fixtures are built to create in-plane radial field. 
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Measurements of PCB-Based Toroids 

One design of magnetic field fixture 

Outer radius: 2.8 mm 
Inner radius: 1.7 mm 
Magnetic film thickness: 40 μ m 

B-H loops of cores 
deposited w/ a radial field 

B-H loops of cores 
deposited w/o a radial field 

Loss in magnetic vias in some inductor 
geometries (e.g. racetrack) 

Hand-Wound Magnetic-Core Toroids 
used to verify core characteristics – not to make useful inductors 

Magnetic core Air core 

Bobbin height: 1 mm 
Core OD: 5.5 mm 
Core ID: 2.3 mm 
Core thickness: 40 μm 

Winding OD: ~7.5mm 
Winding ID: ~1.2 mm 
Wire size: AWG 32 (0.202 mm diameter) 
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Magnetic-Core Toroidal Inductors 
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Winding  • Advantage: 
▫ Flux stays in plane, minimizing eddy-current 

losses. 
• Challenge: 

▫ Flux direction is circumferential, can't be aligned 
with uniaxial anisotropy 

• Our solution 
▫ Induce radial anisotropy to align flux direction in 

the low-loss hard axis. 

PCB-Based Magnetic-Core Toroids 
Cross section of half of the toroid 

1. Toroidal bottom winding 
is patterned in a 1-layer 
PCB. Pads are not covered 
by polyimide to allow via 
growth. 
2. Electroplating the vias   

4. Dropping the magnetic 
core. 

5. Covering the top layer of 
winding (1-layer PCB) by 
electroplating. 

3. Polishing after the via 
plating  

Copper Polyimide Magnetic 
core 

Pads for via growth 
Core position 

(a) Step 0: layout design (b) Step 1: bottom 
winding 

(c) Step 2: vias 
electroplating 

(d) Step 3: polishing (e) Step 4: dropping 
the toroidal core 

(f) Step 5: covering the 
top layer of winding 

• 4-turn toroid 
• Inductor thickness: ~350 μm 
• Core thickness: 10 μm 

• What if we have a thicker core? 
• Based on the 10- μm measurements, we 

estimate how the Q would scale 

Microfabricated Magnetic-Core Toroids 
• Fabrication process and results 

• Characterization of microfabricated inductor 
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Air-core toroid 

Magnetic-core toroid with 10-μm core 

Air-core toroid 

Magnetic-core toroid with 10-μm core 

Magnetic-core toroid with 10-μm core 

Air-core toroid 
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Air-core toroid 

Magnetic-core toroid with 
10-μm core (measured) 

Magnetic-core toroid with 
40-μm core (estimated) 

Magnetic-core toroid with 
80-μm core (estimated) 

10 100 10000.1

1

10

100

1000

f (MHz)

re
la

tiv
e 

pe
rm

ea
bi

lity

Q 

𝝁𝒓
ᇱ 

𝝁𝒓
ᇱᇱ 

-200 -150 -100 -50 0 50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5

H (Oe)

B 
(u

nc
al

ib
ra

te
d)

Easy-axis loop 

Hard-axis loops 
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Radial loop 

Circumferential 
loops 
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Air-core inductor: 11 nH 

Magnetic-core inductor: 155 nH 
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Bottom and vertical windings Core integration on bottom 
and vertical windings 

Completed 10 turn core 
integrated inductor 

Enlarged view of integrated 
core in windings 

1. SU-8 pillar fabrication 
2. Ti/Cu deposition by DC sputtering 
3. Photopatterning of bottom and vertical windings 

and Cu electroplating 
4. PR removal, Ti/Cu seed layer etch 
5. Core integration 
6. Non-photopatternable SU-8 filling 
7. Top conductor patterning and Cu electroplating 
8. PR removal, Cu seed etch, Non-photopatternable 

SU-8 removal 
 
* Inductor has an inner diameter of 1 mm and 

outer diameter of 6 mm, and 300 µm tall.  

• Low-profile magnetic-core toroidal power inductors 
• Radial-anisotropy toroidal core showed good performance              

(Q > 100 at f < 100 MHz) 
• Demonstrated two fabrication processes 

• PCB-based (co-package) 
• Microfabricated (CMOS-compatible) 

• Functional magnetic-core toroidal inductors fabricated and tested 
at small-signal levels 


